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Abstract. Here, we intend to propose a discrete normalization of the
Generalized Curvature Scale Space (GCSS). The GCSS is an Euclidean
invariant planar contour descriptor. It consists on the convolution of the
contour by Gaussian functions with different scales. The points having
the same curvature values as the selected extremums are the considered
key points. This representation implies different number of descriptors
from a shape to another. Thus, a step of redistribution of the key points
is requested. Therefore, a discrete normalization approach is proceeded.
The descriptor is composed by the curvature variation of the key points
at the smoothed curve. Several datasets were used to carry on the exper-
iments and to verify the accuracy, the stability and the robustness of the
novel description. The Dynamic Time Warping distance is the similarity
metric used. Experimental results show that considerable rates of image
retrieval are reached comparing to the state of the art.

Keywords: 2D shape description, curvature scale space, iso-curvature,
shape classification

1 Introduction

The wide range of applications in computer vision demonstrates the importance
of its associated algorithms in many disciplines such as digital medicine, biol-
ogy, multimedia, remote sensing, robotics. Thus, many benchmarks, created by
expert groups of standardization to test and verify these algorithms, witness the
importance of the considered problem. Hence, the interest of the classification
of shapes is no longer to be proved. However, it is well-known that the problem
of 2D shape description is difficult. The shape is a subject to many nonlinear
deformations like noise and occlusion, or Euclidean or affine geometric transfor-
mations caused by different poses. Such description have often to verify at least
the following properties: the efficiency, the stability, the complementeness and
the invariance with respect to any transformation belongs to planar Euclidean
transformations group E(2).
In this context, many approaches were proposed. These methods could be clas-
sified into two major classes: region-based and contour-based ones.
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In the first category, we find methods that characterize the shape content. They
exploit the information that contain its pixels. Such kind of methods consider
the details of the image. Hence, they are reliable for the description of complex
shapes like logos, trademarks as mentioned in the work of Kim and al. [1]. Many
works were proposed in this context, such as the 2D Zernike moments based
methods as complex moments [1],[2]. These methods are very sensitive to local
changes such as occlusion or overlapping objects. There are also the 2D Fourier
descriptors based methods such as the generic Fourier descriptor of Zang et al.
[3] which applied 2-D Fourier transform on polar raster sampled shape image.
They also proposed the Enhanced generic Fourier descriptor in [4] which derived
the generic Fourier descriptor from the rotation and scale normalized shape. The
multi-scale Fourier-based descriptor proposed by Direkoglu et al. [5] represented
the shape using its boundary and its content using the Gaussian filter in many
scales. It is E(2)-invariant and robust to noise. Ghorbel et al. [6] proposed the
analytical Fourier Mellin transform which gave also an invariant description for
region. In the same context, we find the approach presented by Hong et al. [7]
which is based on a kernel descriptor that characterizes local shape.
The second class contains the boundary based methods. There are the Fourier
descriptors applied in [8], [9], [10] and [11]. They extracted the global features
of the contour.
However other methods treat local features. We find the descriptor of Hoffman
et al. [12] who partitioned the curve into parts at negative curvature minima
which enhanced the object recognition. Xu et al. [14] proposed another method
called contour flexibility which represents the deformable potential at each point
of the contour. Klassen et al. [16] presented a differential geometric curve rep-
resentation using its direction and curvature functions. Shu et al [17] proposed
a descriptor named contour points distribution histogram which is based on the
distribution of points on object contour under polar coordinates. In the work
of Sebastian et al. [18], the contour was characterized by two intrinsic proper-
ties: its length and the curvature variations and use them for registration and
matching. Their method is called Curve Edit. There is also the descriptor of
Belongie et al. [19]. It consists of an algorithm called the Shape Context. At
each reference point of the contour, they captured the distribution of the remain
points. For two similar contours, the corresponding points had similar shape con-
texts. This correspondence gives an optimal registration. A new distance called
the Inner-Distance was suggested by Ling et al. [20]. It is defined as the length
of the shortest path between feature points. This distance can replace the Eu-
clidean distance for complex shapes. It was combined with several methods such
as the Shape context [19]. There is also the work of Laiche et al. [21] which is a
part-based approach for contour description called Curve Normalization. They
represented the shape boundary by an ordered sequence of parts. Then, they
associated each part with the cubic polynomial curve using the Least Squared
method. A multiscale approaches also were developed. The Angle Scale Descrip-
tor was proposed by Fotopoulou et al. [15]. It consisted of computing the angles
between points of the contour in different scales. Another multiscale method
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of Mokhtarian et al. [22]. It is the curvature scale space which is based on the
computation of the maxima of the curvature of the smoothed shape by Gaussian
functions in different scales.
In this paper, we intend to propose a discrete normalization of the Generalized
Curvature Scale Space proposed in [23]. It is a contour-based descriptor, that
we nominate Normalized Generalized Curvature Scale Space (N-GCSS). Our
approach is based on the iso-curvature parameterization [24] which is invariant
to Euclidean transformations E(2) and CSS [22] method that extracts the ex-
tremums of the shape in different scales. In a chosen set of scales, we extract
the local extremums of the curvature. We select only those superior to a given
threshold. Our descriptor is formed by the points of the contour having the se-
lected curvature levels. Besides, the number of interest point obtained is not the
same to all the shapes. Therefore, a novel discrete normalization is proceeded.
N-GCSS gives an E(2)-invariant non uniform parameterization of the contour
since it is constructed by the curvature values of the selected points.
The following paper is organized as follows: we describe the steps of our approach
in the second section. In the third section, we expose and discuss the results of
the application of our approach using the MPEG7 Set A Part-A1, MPEG7 CE
SHAPE-1 Part-B [26] and HMM GPD datasets.

2 Normalized-Generalized Curvature Scale Space

In this section, a detailed description of the GCSS [23] and the discrete normal-
ization will be presented .

2.1 Generalized Curvature Scale Space

The Generalized Curvature Scale Space of [23] corresponds to a set of finite and
E(2) invariant points. This representation gives a set of points in the strong
variation regions. The GCSS deals with an injective closed contour denoted by
C. For a given set of scales σ ∈ Σ, they applied the Curvature Scale Space
proposed by [22]. For each σ the smoothed contour Cσ is given as follows:

Cσ :[0, 1]→ R2

t 7→ [x(t, σ), y(t, σ)]t
(1)

In order to extract the key points, the curvature κ(t, σ) at each point of the
smoothed contour Cσ is computed as follows 2:

κ(t, σ) =
xt(t, σ)ytt(t, σ)− yt(t, σ)xtt(t, σ)

(x2t (t, σ) + y2t (t, σ))3/2
(2)

xt(t, σ), yt(t, σ), xtt(t, σ) and ytt(t, σ) are respectively the first and the second
derivatives of x(t, σ) and y(t, σ). The extremums of κ(t, σ) are stored in `σ. A
chosen threshold τ was fixed in order to remove the low curvature extremums.

`σ(τ) = {`σ ; `σ > τ} (3)
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Since the curvature κσ is not a bijective function, the selected points consists of
the reciprocal image of κ−1σ ({`jσ(τ)}).

κ−1σ ({`jσ(τ)}) = {tji /κσ(tji ) = `jσ(τ)} (4)

Where i is the index of the point on Cσ and j is the index of the level. The
selected points at each scale σ are saved in a zc(σ). They can be described as
follows.

zc(σ) = {C(tji , σ) ; tji = κ−1σ {`jσ(τ)}} (5)

The obtained descriptors constitute the following zc.

zc =
⋃
σ∈Σ

zc(σ) (6)

Therefore, our descriptor is composed by the curvature values of these key
points in the selected scales:

z=

⋃
σ∈Σ

z(σ) ;z(σ) = κσ(zc(σ)) (7)

The steps of the GCSS are described in Figure.1.

2.2 Discrete normalization of the key points

GCSS could be seen also as a new parameterization of the contour. Such pa-
rameterization is E(2)-invariant as the curvature. However, in the discrete case,
zc is a set of unordered points of C because it is a resampling procedure of
the points. In the last step, the obtained set of points is ordered. Such set is
distributed non- uniformly and we have more points in strong curvature areas.
In order to make the number of points in zc the same for all contours in the
dataset, a discrete normalization step is proceeded.
We denote by N the number of key points from GCSS of a given curve ie
N = card(zc). However, the wished number of points is Nw. Let z∗c be the
normalized set. In order to obtain Nw interest points from the total N , we start
by computing the cumulative distance between the starting point P1 and Pi
where i the ith point. This procedure is equivalent to define a finite function
from 1..N to an interval [0, a] from R. We consider S(Pi) defined as follows:

S(Pi) =

∫
P̂1,Pi

||C ′(t)||dt (8)

Hence, we resample regularly the abscissa vector [P1..PN ] into [P ∗1 ..P
∗
Nw

]. We
compute S(P ∗i ) and we search the nearest points S(Pj).

argmin
j
||S(P ∗i )− S(Pj)|| (9)

Figure 2 gives an illustration of the proposed normalization procedure for N = 28
and Nw = 10.
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Fig. 1. The Block Diagram of the Normalized Generalized Curvature Scale Space.



6 Ameni BENKHLIFA and Faouzi GHORBEL

Fig. 2. A discrete normalization example from N = 28 to Nw = 10

2.3 The invariance to E(2)

The Normalized Generalized Scale Space descriptor is based on the computa-
tion of the curvature of the smoothed contour in given scales. As the curvature
behavior is the same whatever is the transformation applied to the contour:
rotation, translation or scale, the obtained set of points of C and g(C) is the
same. Where g is an E(2) transformation. The problem of the starting point is
resolved by the use of the Dynamic Time Warping [28] as similarity metric. Fig-
ure 3 demonstrates well the distribution of the key points and their invariance
under E(2).

Fig. 3. The invariance under E(2) transformation (a) point of interest on the original
curves (b) the curvature variation of the two signatures.

3 Experiments and results

The performance of the N-GCSS is tested on three datasets and evaluated in
terms of shape retrieval efficiency and precision-recall curves. The datasets used
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for the experimentations are: HMM GPD and MPEG7 CE Shape-1 Part-B [26]
and MPEG7 Part-A1. For the recognition, each object is compared to all the
shapes in the dataset using the Dynamic Time Warping [28] algorithm and
matched to the closest one.

3.1 The datasets

The HMM GPD is composed of four sub datasets as shows the following table 1:
bicego-data [25] , plane-data , mpeg-data and car-data [27]. We form an other set
of shapes using the four sub datasets (bicego, plane, car and mpeg) by picking
up the 20 first elements of each class. The MPEG7 CE Shape-1 Part-B dataset

Table 1. HMM GPD sub-datasets

Sub-dataset Number of objects

Bicego 140

Plane 210

Car 120

Mpeg 120

HMM 480

[26] is a well-known dataset. It is composed of 1400 elements that are grouped
in 70 classes. Each class contains 20 images.
The MPEG7 Part-A1 is composed of 420 objects grouped in 70 classes. It is used
to test the performance of the descriptor under scales transformations

3.2 Results

In this paragraph, the experiments on the above datasets are carried on. The
parameters of N-GCSS are chosen empirically: σ ∈ 5, 6 and τ = 10−3 in order to
eliminate the local extremums having very low curvature. We choose Nw = 100
the number of key points for each contour.
We proceeded the k nearest neighbors (k-NN) algorithm in order to compute
the pairwise shape matching scores in the recognition step. For each shape, the
distance (Dynamic time warping) is computed from all the other shapes in the
dataset and the knearest neighbors are selected.
To evaluate the performance of our representation and to compare it with other
techniques from the state of the art. Table.2 lists the retrieval results of our
descriptor N-GCSS on HMM GPD dataset using 1NN algorithm. We reach very
high score for Mpeg (100%) and Plane (98.57%) datasets. Although the Car sub-
dataset contains bad quality contours, N-GCSS outperforms the CSS descriptor
[22] and reaches 73.33%. This demonstrates well the robustness of our descriptor
to numerical approximation. This robustness is due to the use of the multiscale
approach in the construction of the proposed approach.
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Table 2. Retrieval results on HMM dataset using 1NN algorithm for : N-GCSS and
CSS [22]

Rate N-GCSS (%) Rate CSS (%)

Bicego 94.29 90.00

Plane 98.57 79.52

Car 73.33 55.00

Mpeg 100 95.83

HMM 85.42 75.62

Our descriptor was compared also to the Contour Points Distribution Histogram
(CPDH) [17], Fourier Descriptor (FD) [11] and Curvature Scale Space (CSS) [22]
for MPEG7 CE Shape-1 Part-B [26]. Figure 4 shows the precision-recall curves of
the mentioned descriptors on the MPEG7 CE Shape-1 Part-B [26]. The proposed
representation gives higher precision rates than the above-mentioned descriptors.
By computing the retrieval rate using the 1NN algorithm for this dataset [26],
we reached 91.27%.
The performance of the proposed descriptor is compared also with other ap-
proaches in the literature. The retrieval rates are measured with the Bull’s eyes
algorithm. Each shape is considered as a query and we count how many objects
within the 40 most similar objects belong to the class of the query. Table 3 lists
the Bull’s eye scores of some algorithms. We remark that our method gives a
competitive score comparing to the state of the art.

Table 3. Bull’s eye MPEG7 CE SHAPE-1 Part-B [26]

IDSC [20] 85.40%

N-GCSS 77.20%

CPDH [17] 76.56%

SC [19] 76.51%

CSS [22] 75.44%

ASD [15] 70.51%

Curve normalization [21] 50.76%

We used also the MPEG7 Part-A1 set in order to test the accuracy of the pro-
posed descriptor under scale transformation. N-GCSS outperforms the Fourier
Descriptor (FD) [11] and Curvature Scale Space (CSS) [22]. The precision-recall
curves are illustrated in Figure 5. The results prove the accuracy, stability and
invariance to E(2) properties of the proposed representation.



A Normalized Generalized Curvature Scale Space 9

Fig. 4. Retrieval Rate for MPEG7 CE Shape-1 Part-B dataset for :N-GCSS, CPDH,
FD and CSS

Fig. 5. Precision recall for MPEG7 Part-A1 dataset for : N-GCSS, FD and CSS

4 Conclusion

In this work, we introduced a 2D contour description. It is based on the General-
ized Curvature Scale Space of [23]. The GCSS is constructed by a E(2) invariant
set of points. This set corresponds to the high curvature zones of a contour. The
contribution of this paper lies on the discrete normalization of the obtained key
points. This normalization makes comparison between the contours easier. The
problem of starting point is overcome by the use of the Dynamic Time Warp-
ing [28]. The performance of the normalized GCSS is tested by carrying out
many experiments on two well know datasets which are: HMM GPD, MPEG7
CE SHAPE-1 Part-B [26] and MPEG7 Part-A1 and comparing to several de-
scriptors. Results show well the accuracy of our E(2)-invariant descriptor and
its stability and robustness to numerical approximation.
Many perspectives could be cited to this work. We intend to present a method
of choosing the set of scales while considering the complexity of the shape to
be analyzed. We look also for a combination of this novel parameterization with
other descriptors from the state of the art since the set of key points found can be
considered as a non-uniform parameterization of the contour. They are located
at strong-curvature zones only. However, the arc-length reparameterization gives
a uniform distribution of points which can be a waste of energy. An immigration
to the 3D dimension also is among our future work.
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